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Abstract 
We present a historical review of the hypothesis of boundary forced predictability of monsoon, its 

limitations and the challenges in dynamical seasonal prediction of monsoon rainfall. We also present an 
assessment of the multi-model seasonal predictability of summer-mean precipitation over the Asian Monsoon-
Western Pacific region by using 21 year (1979-1999) hindcast predictions of the five models, participating at the 
Asia-Pacific Economic Cooperation Climate Network (APCN). The five models consist of the current 
operational seasonal prediction models of NCEP, NASA, JMA, KMA, and SNU. The potential predictabilities 
of individual models are shown by various methods including the signal to noise ratio and anomaly correlations. 
Statistical methods for correcting the bias of the model prediction are developed and applied to individual model 
predictions. It is shown that the statistical correction is effective for enhancing the predictability, particularly for 
the Asian Monsoon – Pacific region, where the models have large bias. It is shown that a reasonably good 
seasonal prediction can be achieved when the multi-model predications are combined based on the composite of 
the individual predictions after applying the statistical correction to each separately.  

Although this chapter describes mainly current status of the Tier-two seasonal prediction systems, the 
present skills of the Tier-one systems, utilizing coupled ocean-atmosphere models, are also examined using the 
data from Development of European Multimodel Ensemble System for Seasonal-Interannual Prediction 
(DEMETER). It is shown that the Tier-one system has advantage in producing better seasonal-mean anomalies, 
particularly in the western Pacific and Indian Ocean where air-sea interaction is active during summer. However, 
after applying a same correction method, it appears that the Tier one and Tier two systems produce a similar 
prediction skill.  

1. Introduction 

1) Historical Review 

Variations of monsoon rainfall affect agriculture, drinking water, transportation, health, power, 
and the very livelihood of billions of people living in the monsoon region. It is no surprise therefore 
that for more than one hundred years several countries have tried to issue long range forecasts of 
monsoons (India Meteorological Department started issuing long range forecasts of monsoon rainfall 
in 1886). The operational long range forecasts of monsoon rainfall were based on empirical 
relationships derived from past observations of atmospheric pressure, temperature and wind. Blanford 
(1884) was the first one to suggest the use of a surface boundary condition (snowfall over Himalayas 
in the preceding winter) to predict the summer monsoon rainfall over India.  

Charney and Shukla (1977, 1981) presented for the first time a conceptual hypothesis for 
monsoon predictability based on the influence of the boundary forcing at the Earth’s surface. A brief 
historical perspective on this hypothesis is given here. Charney et al. (1977) had conducted AGCM 
experiments with NASA/GISS AGCM to investigate the influence of changes in albedo on rainfall 
over Sahel. In these experiments it was found that the summer rainfall variance among the three 
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ensemble members (each member was integrated only for 45 days) was quite small over the Indian 
monsoon region, indicating that the boundary conditions mainly control the Indian monsoon rainfall. 
In a symposium on monsoon dynamics in New Delhi in 1977, Charney reviewed some recent 
observational papers (Shukla and Misra (1977) for SST, Hahn and Shukla (1976) for snow cover), and 
a GCM experiment (Shukla (1975) for impact of Arabian sea SST). 

Shukla and Misra (1977) had shown an empirical evidence of a possible relationship between 
Arabian sea surface temperature (SST) and Indian rainfall, and Shukla (1975) had shown that in the 
GFDL atmospheric general circulation model (AGCM), specification of (large) positive SST 
anomalies over the Arabian sea produced increase in monsoon rainfall over India. Hahn and Shukla 
(1976) revived the Blanford’s hypothesis of snow–monsoon relationship by showing, using satellite 
derived snow cover data, an inverse relationship between the winter season snow cover over Eurasia 
and the subsequent summer monsoon rainfall over India. These results, combined with the results 
from the GISS model in which variance of seasonal rainfall among ensemble members was quite 
small, lead Charney and Shukla (1977, 1981) to propose a hypothesis that predictability of monsoon 
depends on the influence of boundary conditions at the earth’s surface. The low variance among three 
ensemble members of the GISS model underestimated the role of internal dynamics in producing 
large intraseasonal and interannual variations of monsoon circulation and rainfall.  

The Charney-Shukla hypothesis has been the central paradigm for monsoon predictability 
research during the past 25 years. However, no dynamical model has been successful, so far, in 
realizing the potential predictability of summer monsoon rainfall, especially over monsoon region. 
Whether our inability to capture the boundary forced signals is due to inadequate models and 
modeling strategies or due to intrinsic limits to the predictability of seasonal mean rainfall because of 
large natural intraseasonal variability of monsoon remains to be an open question and a topic of 
vigorous debate. In the following section we present a critical retrospective of the Charney-Shukla 
hypothesis and describe the barriers to realizing the potential predictability.  

For the influence of the boundary conditions to be useful to predict monsoon rainfall, the 
following three conditions need to be satisfied: 1. There must be a large and persistent anomaly at the 
earth’s surface, 2. There must be a well defined dynamical mechanism through which changes in the 
boundary condition will produce a corresponding change in seasonal mean monsoon rainfall, 3. The 
seasonal mean response (signal) must be sufficiently large and reproducible so that it can be 
distinguished from the intrinsic variability (noise) of the model due to internal dynamics alone. Large 
number of model simulations during the past decade with higher resolution AGCMs using advanced 
parameterizations have clearly shown that the internal variability over the monsoon region is much 
larger than that was shown by Charney and Shukla. This implies that large member ensembles are 
needed to distinguish the boundary forced response from internal dynamics variability. If the internal 
variability was at small spatial scales and at high frequency, large scale spatio-temporal averages (viz 
seasonal mean over whole India) could be predicted if the boundary forcings were indeed important, 
and if the models were able to simulate the appropriate physical effects.  

The current generation of AGCMs have such large systematic errors in simulating both the mean 
and the variance of summer monsoon rainfall that it is not possible to conclude whether our current 
inability to make useful dynamical seasonal prediction is due to lack of boundary forced predictability 
or inadequacy of the current models and modeling strategies. However, recent research work in which 
model experiments are carried out with coupled ocean-atmosphere models suggests that the 
prescription of SST anomalies in AGCM experiments is an inadequate modeling strategy because SST 
anomalies in the Indian Ocean and the adjoining western Pacific Ocean are either forced by the 
atmosphere or evolve as a strongly coupled ocean-atmosphere process (Wang et al. 2004). If ocean-
atmosphere coupling is indeed crucial for the Indian Ocean and western Pacific SST anomalies, 
predictability of monsoon must be investigated with coupled ocean-atmosphere models, which 
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currently have large systematic errors. The problem is further compounded by the fact that 
atmosphere-land interactions are also quite important for simulation and prediction of monsoon 
rainfall. Even if SST anomalies were able to force significant changes in large scale circulation, the 
local land-atmosphere interaction will modulate the ocean forced remote response and determine the 
actual changes in rainfall over land. Therefore, realistic models of the total climate system (ocean-
land-atmosphere) are required to understand the predictability, and to make useful predictions of 
monsoon rainfall. 

2) Challenges in Dynamical Seasonal Prediction of Monsoon 

The current AGCMs and coupled models have been unsuccessful in producing skillful predictions 
of seasonal mean rainfall over monsoon region. Some of the major challenges are summarized below. 

A. Simulation of monsoon climate: The Asian monsoon region has many unusual geographical 
features: very high mountains (Himalayas), the steep coastal regions of India (the western Ghats) and 
the Burmese coast, large number of islands in the maritime continent), which make it difficult to 
simulate the structure and variability of mean monsoon rainfall using coarse resolution models. While 
it is likely that very high resolution models will be able to simulate geographically forced structures of 
regional rainfall, the large discrepancy between the observed and the simulated rainfall, especially 
during the summer monsoon season, suggests some basic problems in the physical parameterizations, 
and especially the interactions between dynamics and moist convection. For example, nearly all 
AGCMs show incorrect simulation of summer mean rainfall over the Indian Ocean and the western 
Pacific (Kang et al. 2002b). The current models (both the AGCMs and the coupled models) also have 
large errors in simulating the structure and intensity of rainfall over land. It is unlikely that models 
with large errors in simulating the mean climate will be able to simulate and predict its interannual 
variability. 

B. Simulation of interannual variability (modeling strategy): Inability of the current models to 
simulate the mean climate is perhaps the primary reason that the models are unable to simulate the 
interannual variability. It is therefore inevitable that these models will be unable to make a useful 
prediction of climate anomalies. In this paper it will be shown that the models indeed have large 
systematic errors in simulating the structure and magnitude of the monsoon climate anomalies. 
Whether the inability of the current models to simulate the observed rainfall and circulation anomalies 
is due to inadequate model resolution and physical parameterizations, or due to the incorrect modeling 
strategy of prescribing the SSTs has been addressed by several researchers. It has been shown by 
Wang et al. (2004) and Kirtman and Shukla (2002), that the coupled atmosphere-ocean processes are 
extremely important, and prescription of SST in the Indian Ocean and the western Pacific is a major 
factor in degrading the simulation of monsoon rainfall. Therefore an appropriate modeling strategy to 
estimate the predictability of monsoon and to make dynamical seasonal prediction will be to use 
coupled ocean-atmosphere models. However, the current coupled models need to be further improved 
to simulate the space-time structure of interannual variability of SST and rainfall. 

C. Simulation of Intraseasonal Variability: There is a large body of observational and modeling 
research (Webster et al, 1998; Sperber et al, 2001) that clearly shows the importance of intraseasonal 
variations of rainfall both for understanding the predictability of seasonal mean rainfall and for 
societal applications. In particular, many studies indicate that the monsoon active and break phases are 
closely related to the Monsoon intraseasonal variations and the climatological rainy seasons in East 
Asia, such as Meiyu in China, Changma in Korea, and Baiu in Japan. Those rainy seasons appear to 
relate to phase locking of the intraseasonal variation to the climatological cycle (Kang et al. 1999) 
However, neither the current generation of AGCMs with prescribed SST nor the coupled ocean-
atmosphere models are able to correctly simulate the intraseasonal variations (Wu et al. 2002; Waliser 
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et al. 2003). It is unclear whether this deficiency of models is due to inadequate resolution and 
parameterizations of moist convection, or due to inadequacy in simulating the coupled processes. 

D. Land-atmosphere interactions: It is well known that even the remote effects of SST anomalies 
get strongly modulated by local atmosphere-land interactions, and therefore, the observed 
intraseasonal and interannual anomalies of rainfall over land are manifestations of coupled ocean-
atmosphere-land interactions. The monsoon climate and its interannual variability is especially 
influenced by the three way interactions among ocean, atmosphere and land. This puts an additional 
challenge on climate models to simulate the mean monsoon circulation and its interannual variability. 

E. Model dependent estimates of predictability: For a number of reasons, some of which are 
mentioned before, it is no surprise that the current generation of models give different estimates of 
SST forced “signal” and internal dynamics generated “noise,” and therefore the estimates of seasonal 
and regional predictability (if defined as signal to noise ratio) are highly model dependent. In this 
respect, we are in the same situation today as Charney et al (1966) were about 40 years ago, when 
they found that the estimates of weather predictability were highly model dependent. It took more 
than 30 years before most of the NWP models of the world began to produce similar estimates of 
weather predictability. Likewise it is expected that as the climate models are improved to make more 
realistic simulation of observed climate and its variability, the estimates of seasonal predictability of 
monsoon will also improve. 

3) Current Dynamical Seasonal Predictions 

In spite of many challenges described above, dynamical seasonal predictions using general 
circulation models have been implemented by several operational centers in recent years. In particular, 
possible improvement of seasonal prediction has been sought by use of multi-model ensembles to 
remove the uncertainties associated with the spread of ensemble predictions with different initial 
conditions and the uncertainties associated with model parameterizations (Krishnamurti et al. 1999; 
Palmer et al. 2004). This chapter describes the present status of dynamical multi-model ensemble 
seasonal prediction system, particularly for the Monsoon precipitation.  

In the ensemble simulation, all ensemble members are forced by the same SST but started from 
slightly different atmospheric initial conditions (Dix and Hunt 1995; Kumar and Hoerling 1995; Stern 
and Miyakoda 1995; Zwiers 1996; Kang et al. 2004). The basic idea of this approach is that the 
differences among the ensemble members can be used to quantify the noise due to internal dynamics, 
whereas the relative similarity between ensemble members can be considered as the atmospheric 
response to the external forcing. Thus, the ensemble mean (signal) can be considered as the 
component of the prediction forced by the SST, and the deviation from the ensemble mean as the 
stochastic internal component of the prediction. In this approach, the potential predictability is 
measured by the ratio between the externally forced SST signal and the internal noise using a standard 
statistical tool for this kind of problem: “analysis of variance” (ANOVA), which is detailed in many 
previous studies (Shukla 1981; Rowell et al. 1995; Rowell 1998).  

Recently, attempts also have been made to reduce the uncertainty of models by simply 
compositing multi-model solutions (Kang et al. 2002a) and by using the so-called the “super-
ensemble” method (Krishnamurti et al. 1999). The present skill of dynamical seasonal prediction is 
low, if any postprocessing is not applied. The poor skill is not only due to the atmospheric internal 
processes but also due to the model’s inability in producing the atmospheric responses to external 
forcings, particularly the SST anomalies. This model bias in the external component arises from 
imperfect formulation and parameterization of various physical processes in the model. Different 
parameterizations produce different solutions. It may be assumed that the errors of those solutions are 
independent from each other, and various model solutions spread randomly but close to the 
observation. Then the composite of many model solutions can reduce the model random errors.  
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The model error can also be reduced by statistical correction methods. A major part of non-
systematic error of each model can be corrected by a statistical relationship between the prediction 
and observed anomalies. Most commonly used methodology is the so-called coupled pattern 
technique (Graham et al 1994), based on singular value decomposition (SVD) analysis and canonical 
correlation analysis (CCA). Ward and Navarra (1997) applied SVD to simultaneous fields of GCM 
simulated precipitation and observed precipitation to correct the errors in the model response to SST 
forcing. CCA has been widely used for a statistical seasonal prediction system (Barnett and 
Preisendorfer 1987; Barnston 1994). A recent study by Feddersen et al. (1999) demonstrated that the 
postprocessed results are not sensitive to the choice among the methods based on the CCA, SVD, and 
EOF decompositions. In this paper, the postprocessing procedures of the error correction are 
developed based on the SVD analysis and a point-wise statistical downscaling method. By comparing 
the potential predictabilities with and without the correction, we can evaluate how the postprocessing 
of error correction enhances the predictability in the regions of interest.  

At present, the dynamical seasonal prediction procedures are categorized as Tier-two and Tier-one 
systems. The Tier-two system treats the atmosphere and the ocean (specifically SST) separately. This 
system relies on an atmospheric GCM integrated with prescribed (either observed or predicted) SST 
boundary conditions and atmospheric initial conditions. The potential predictability of the Tier-two 
systems have been examined internationally by the Seasonal Model Intercomparison Project (SMIP 
II) initiated by the Climate Variability and Predictability Program (CLIVAR)/Working Group on 
Seasonal to Interannual Prediction (WGSIP). The purpose of SMIP II is to evaluate the current 
dynamical seasonal prediction systems in a framework, where the lower boundary conditions are 
prescribed with the observed SSTs for the 20 years 1979-98. On the other hand, SMIP/Historical 
Forecast Project (HFP) uses the predicted SST conditions instead of the observed, and therefore the 
SMIP/HFP evaluates the real seasonal predictability of current operational prediction systems. 

The Tier-one system utilizes a coupled ocean-atmosphere model. At present, the climatology of 
coupled models has large systematic bias. However, as mentioned before, the coupled model has some 
advantage in simulating the monsoon anomalies particularly in the subtropical western Pacific and 
Indian Ocean, where air-sea interaction plays an important role in producing seasonal-mean 
anomalies. Recently, the European community has established the Development of European 
Multimodel Ensemble System for Seasonal-Interannual Prediction (DEMETER) based on the seven 
coupled models in European countries (Palmer et al. 2004). The aim of DEMETER is to develop a 
multi-model Tier-one seasonal prediction system and evaluate the skill of the prediction system. At 
present, ECMWF produces the seasonal prediction regularly based on the DEMETER. The present 
chapter shows the skill of the Tier-one DEMETER system and other Tier-two systems.  

Section 2 describes the prediction experiment and the data utilized in the present chapter. The 
potential predictabilities of Tier-two systems are examined in terms of the signal to noise ratio in 
Section 3 and in terms of anomaly correlation in Section 4. The potential predictability is defined here 
as the predictability obtained by prescribing the observed (not predicted) SST boundary conditions in 
the model. Section 5 introduces a statistical correction method and shows how the prediction skill is 
improved after the correction. Section 6 shows the potential predictability of various multi-model 
ensemble prediction systems. In contrast to the potential predictability examined in the previous 
sections, the real predictabilities are assessed in Section 7 by using a Tier-two system with predicted 
SSTs and Tier-one systems (DEMETER coupled models). Summary and concluding remarks are 
given in Section 8. 

2. Models and Experiments 
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The data utilized in the present study are obtained from the Asia-Pacific Economic Cooperation 
(APEC) Climate Network (APCN). The APCN is aimed at producing and disseminating a multi-
model ensemble seasonal prediction based on operational prediction products of APEC member 
countries. Among them, used are the dynamical seasonal prediction data produced by Japan 
Meteorological Agency (JMA), Korea Meteorological Administration (KMA), National Aeronautical 
Space Agency (NASA), National Centers for Environment Prediction (NCEP), and Seoul National 
University (SNU), in part of the Seasonal Prediction Model Intercomparison Project (SMIP) II, leaded 
by the CLIVAR/Working Group of Seasonal to Interannual Prediction. The SMIP II extends the 
prediction target to two seasons for all four seasons (winter, spring, summer, autumn) of the 21 years 
of 1979-99, requiring each participating center to carry out more than 6 ensemble integrations for 7 
months. The observed SSTs are prescribed for the integration. Therefore, the SMIP II can estimate the 
upper bound of seasonal predictability but not the actual predictability. See the details of SMIP II at 
the web page, http://www-pcmdi.llnl.gov/smip. The above models consist of different combination 
of physical parameterizations, listed and summarized in Table 1. The DEMETER data is also used in 
the present study. Details of the DEMETER can be found in Palmer et al. (2004) and the participating 
models of DEMETER are listed in Table 2. 

The present study focuses on the predictability of seasonal-mean rainfall for boreal summer. For 
brevity, hereafter “boreal summer” is abbreviated to “summer”. The prediction data of each model 
consists of 10 members of summer-mean precipitation for the 21 summers of 1979-99, except the 
NASA and JMA models of 9 and 6 members, respectively. The 10 members were generated with the 
observed initial conditions at 00Z and 12Z 27-31 May. The horizontal resolution of all data is 
converted to 2.5O in longitude and 2.5O in latitude. The observed precipitation data for the verification 
is obtained from the Climate Prediction Center Merged Analysis of Precipitation (CMAP) data set 
(Xie and Arkin, 1997). 

3. Signal to Noise Ratio 

The present section describes how well the AGCMs of the Tier-two system simulate the 
climatological summer-mean precipitation and its interannual variance. The variance is decomposed 
into the external (signal) part, related to the SST forcing, and the internal (noise) part, related to the 
atmospheric nonlinear internal dynamics, and the potentially predictable region is identified by 
examining the signal to noise ratio over the globe. Fig. 1a shows the observed climatological summer-
mean precipitation for 21 years. Other figures in Fig. 1 show the simulated counterparts of Fig. 1a. 
The model climatology is obtained based on the average of 126 for JMA, 189 for NASA and 210 
samples (10 members/each yr x 21 years). for other models, respectively. Although there are some 
differences, all models simulate the observed large-scale precipitation pattern, particularly large 
precipitations over the Bay of Bengal, surrounding regions of India, the western Pacific and ITCZ in 
the tropical central and eastern Pacific. A common failure of the models is the too much dryness over 
the equatorial eastern Indian Ocean. Also, the observed East Asian-western Pacific rainbelt is shifted 
to the inland region and Manchuria in all models except the JMA. This common shift of the model 
rainbelt was also demonstrated by the CLIVAR/AGCM Monsoon Intercomparison (Kang et al. 
2002b).  

The interannual variability of summer-mean precipitation is examined in terms of its variance. 
The anomaly is defined as the deviation of summer-mean precipitation from its climatology. Fig. 2a 
shows the variance of observed summer-mean precipitation for the 21 years. The spatial pattern of 
Fig. 2a is similar to that of Fig. 1a, indicating that large variability appears in the regions of large 
mean precipitation. Figs. 2b-2f are the corresponding variances of each model. Each model variance is 
estimated based on predictions of all members for the 21 years, and it will be referred to as the total 
variance. As in the observation, the spatial distribution of the simulated variance appears to be similar 
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to that of the corresponding climatological mean. But, the magnitudes of the simulated variances are 
quite different for different models. The NCEP variance is particularly large and about ten times larger 
than that of the JMA over Indochina, South China and Indian regions. The NCEP model has much 
larger interannual variances than the observed, and the JMA model has much less variances in most of 
the regions, particularly over the Asian monsoon region. The difference among the model variances is 
partly related to the difference in the mean climatology and to the different combination of model 
physics. But, it is difficult to identify which model physics is responsible for generating such large 
differences. 

The total variance ( 2
TOTσ ) is divided into the external ( 2

SSTσ ) and internal variances ( 2
INRσ ; 

Rowell, 1996). The ensemble mean is considered as the external component of the prediction forced 
by the SST forcing, and the deviation from the ensemble mean as the stochastic internal component of 
the prediction. The internal variance can be expressed as 
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and internal variances expressed above is equal to the total variance.  
Figs. 3a-3e show the external variances of various models, and Figs. 3f-3j the internal variances. 

The signal to noise ratio, the ratio of the external part to the internal part of corresponding model, is 
shown in Figs. 3k-3o. All models produce large external variances over the tropical oceans, which are 
much larger than the internal variance of same model, particularly the ENSO region. Note that the 
JMA, NASA, and SNU models produce very little internal variances in the tropical Pacific. On the 
other hand, the NCEP model has large internal variability along the Pacific ITCZ region, although the 
external variances are still larger than the internal part over the region. This result indicates that the 
tropical rainfall is less controlled by the atmospheric internal processes and thus predictable for a 
given SST condition. In the extratropics, on the other hand, the internal variances are bigger than the 
external variances of the same model (Figs. 3k-3o), and therefore the extratropical atmosphere is more 
controlled by nonlinear stochastic processes and less predictable.  

Over the Asian monsoon-western Pacific region, the external and internal parts appear to be 
equally important for all models, although some models (JMA, NASA, and SNU) have relatively 
large values of the signal to noise ratio over the region (Figs. 3k-3o) compared to those of the KMA 
and NCEP models. In contrast to other models, the KMA model produces relatively weak external 
variances but large internal variance over the western Pacific. As a result, the signal to noise ratio of 
the KMA model is small over the region, indicating less predictability for the Asian monsoon. It is 
interesting to note that the internal variance is generally proportional to the external variance. In 
particular, the large variance of the NCEP model shown in Fig. 2 is partly due to the large internal 
variance, particularly over the Asian Monsoon region. On the other hand, the internal variance of the 
JMA model is very weak. As a result, the JMA model has relatively large values of signal to noise 
ratio, although its forced variance is significantly weaker than those of the other models. It is also 
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noted that the internal variance is very much model dependent, indicating that the internal variations 
are not only controlled by the dynamics but also by model physics.  

As shown in Fig. 3, the tropical rainfall variations are mainly controlled by the SST anomalies 
and therefore potentially predictable, if the model responses correctly to the prescribed SST. But, the 
model has systematic errors. Therefore, the signal to noise ratio shown in Figs. 3k-3o show the upper 
limit of predictability. The model error is estimated by the difference between the ensemble mean of 
model predictions and the corresponding observations. The error variances of each model are shown 
in Figs. 4a-4e. It is interesting to note that the spatial distributions of the errors for all models are 
similar. All models produce large systematic errors in the Asian Monsoon region and along the ITCZ. 
The ratio of the external variance to the error variance is shown in Fig. 4f-4j for individual models. If 
the ratio is bigger than one, the prediction signal can be considered to be larger than the error. Such 
regions appear in the central equatorial Pacific, the tropical Indian Ocean, and near the northeastern 
coast of South America. In other regions, particularly the Asian monsoon and western Pacific, all 
models produce errors which are bigger than the signals. This result indicates that although there exist 
large prediction signals in the monsoon region (Fig. 3), which are related to SST, the signals are 
poorly simulated by the models. In the remainder of this chapter, we investigate whether it is possible 
to make a reliable monsoon prediction, if the systematic errors were corrected. The error correction 
will be discussed in Section 5. 

4. Potential Predictability of Various Models 

The prediction skill of each model is measured by using the correlation between the ensemble-
mean predictions and the observations for 21 years. Since the observed SST was prescribed in the 
hindcast predictions, this prediction skill is a measure of potential predictability. In contrast, the real 
predictability should be measured based on the hindcasts with predicted SST and will be shown in 
Section 8. Fig. 5 shows global distribution of correlation coefficient between the observed and 
predicted ensemble-mean precipitation at each grid point for the 21 summers. The correlations of 
various models are shown in Figs. 5b-5f, and Fig. 5a shows the correlations between the observation 
and the five model composite. As expected in the previous section, all models have large correlation 
over the ENSO region, where the external (forced) variance exceeds the internal variance and the 
model systematic error. In contrast, over the Monsoon region, the correlation skill is very poor for all 
models. It is noted that the model composite does not help to improve the correlation skill. In the 
subtropical western Pacific and the Atlantic Ocean, all models and the composite have large negative 
correlation values. The negative correlation in the western Pacific is due to model bias, where the 
external response has large systematic errors (Fig. 4). Recently, Wang et al. (2004) suggested that the 
poor simulations of precipitation over the western Pacific is due to the two-tier prediction system, 
where the atmosphere is forced by the prescribed SST. This provides an additional evidence that the 
ocean-atmosphere coupled processes are important for the summer precipitation anomalies in the 
western Pacific.  

The spatial correlation over the globe between the ensemble mean seasonal prediction and the 
corresponding observed precipitation at each year is shown in Fig. 6a. Correlation values of various 
models are marked with the symbols shown at the bottom of the figure, and those of the model 
composite with a line. The figure shows that none of the models have a predominant performance to 
the others, however, the model composite has a best skill with exceptions of few years. The composite 
correlation skill varies from about 0.2 in early 1980s to 0.66 for 1987. It is noted that the relatively 
large correlation skill appear in the years of ENSO, particularly for the El Nino summers of 1987, 91, 
97, and the La Nina summers of 1988. It is also noticed that the correlation skill of 1983 summer is 
relatively high, although the tropical Pacific SST was normal.  
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The spatial correlations of the Monsoon region (40o-160oE, 20o S-30o N) are also computed for the 
five models and the model composite, and their year to year variations are shown in Fig. 6b. With a 
few exceptions, all models poorly predict the monsoon precipitation for most of the summers. The 
model composite shows the correlation values below 0.3 for most of the summers, except the years of 
1981, 86 and 87. Among those years, only one summer (1987) was a El Nino year. To examine the 
SST impact on the monsoon prediction, the SSTs are composed for the four years of good prediction 
cases (1981, 86, 87, 90) and for the years of bad prediction cases (1980, 82, 94, 97), and the 
composite SST anomalies are shown in Fig. 7. Comparison between Figure 7a and 7b clearly 
demonstrate that the monsoon precipitation is indeed closely related to the SST anomalies, 
particularly over the oceans surrounding the Asian monsoon region and the eastern tropical Pacific. 

We also examine the prediction skill of a hypothetical perfect model (a model with no systematic 
error). The correlation skill of the perfect model is estimated for each model by considering one of the 
ensemble members as observation, and that is correlated with the ensemble-mean of the other 
members. Fig. 9a shows the global pattern correlations for various perfect models. Different perfect 
models have different correlation skills, which are proportional to the ratio of the external variability 
to the internal variability shown in Fig. 3. As expected from Figures 3k-3o, the perfect model 
configurations of JMA, NASA, and SNU have higher correlation skills (the average global pattern 
correlation about 0.8) than those of KMA and NCEP. For the monsoon region (Fig. 8b), the perfect 
model correlation values highly depend on the model. Fig. 8b shows that the NASA and KMA 
models, respectively, have highest perfect model correlations (the average value of about 0.7) and 
lowest correlations (the average value of about 0.3). It is noted that these perfect model correlations 
are the upper-limit of predictability that the models can have, if the real climate variability is same as 
that of model, and that represent the degree of reproducibility of each model.  

5. Prediction Skill after Error Correction 

(1) Error Correction and Verification Methods 

The model bias in the external component appears in a systematic way in both the climatological 
mean and the anomaly component. The mean bias can be corrected by subtracting the prediction 
climatology from the prediction of each individual year. The systematic error of the anomaly 
component is related to incorrect performance of GCM in simulating the anomalies, predominantly 
forced by the SST anomalies. It is noted that a slight shift of the spatial pattern of model anomaly can 
result in a substantial drop in skill scores when the skill is measured based on the performance at 
individual grid-points. Here two statistical correction methods are introduced. The first method is 
based on the singular value decomposition (SVD) (Ward and Navara 1997; Feddersen et. al. 1999; 
and Kang et al. 2004). As in Kang et al. (2004), the systematic errors of the predicted anomaly are 
corrected by replacing the SVD modes of prediction to the corresponding observed modes. The 
transfer function for the replacement can be constructed as follows, 

)()(),(
1
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P

i
ii∑

=

= α    (3) 

where, X(x,t) is the corrected field, Y(t) is the time coefficients of the SVD mode for the predicted 
field, and R(x) is the projection of SVD singular vector onto the observed field. i is the mode number, 
P the total number of the SVD modes, and α  is the correlation coefficient between the time series of 
the SVD mode of prediction and the corresponding SVD time series of observation. It is noted that 
before obtaining the SVD modes, the EOF analysis is applied to the predicted and observed 
anomalies, separately, and the observed and predicted fields are reconstructed by retaining the leading 
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10 EOF modes of each field. This process filters out small scale anomalies and smoothes the spatial 
fields. 

It is noted that the SVD based correction method is working well in the region where the principal 
eigenmodes are distinctive. However, this method can not correct the bias which is not related to a 
leading SVD mode and/or has a local character. Another correction method, used in this chapter, is the 
so-called “Coupled Pattern Project Method (CPPM),” which is based on the large-scale patterns of 
model variables correlated to a local (grid) observed precipitation. Once, the model patterns are 
determined from hindcast prediction data, the local precipitation can be predicted by a linear 
combination of the predictors obtained by projecting the patterns to the dynamical prediction data. 
Thus the CPPM can be considered as a statistical downscaling method for a local prediction. Here, it 
is important to define optimally the domains of the patterns for each local prediction, which are 
predetermined based on hindcast prediction data. The optimum domains are obtained by repeatedly 
comparing the prediction skill of the corrected prediction by changing and moving the domains over 
the globe. The domain sizes scanned are from 30o longitude x 20o latitude (minimum size) to 
120olongitude x 50o latitude (maximum size). In the scanning procedure, the domains are selected 
only if the statistical significance of a grid point in the domain exceeds a certain threshold value, 95% 
significance level. Here, the variables used as predictors are precipitation and 850hPa temperature. As 
shown later, the CPPM is a powerful method that can be used for all grid points of the model.  

Double cross validation (Kaas et al. 1996) is used to evaluate the skill of the bias-corrected 
prediction anomalies. The relatively short period of record, 21 years, utilized in the present study may 
overestimate skill scores by overfitting random variability as indicated by Davis (1976). To control 
this problem, the correction method developed without the target year is applied to the year. In 
addition, in each step of cross-validation procedure, cross-validated expansion coefficients of the SVD 
modes are computed in order to select the modes being included in the bias correction. Details of the 
present verification procedure can be found in Feddersen et al. (1999) and Kang et al. (2004). For the 
CPPM, the patterns used for the whole period of prediction are determined optimally based on a 
double-cross validation procedure. 

It is noted that the corrections of prediction toward observation based on both the SVD and CPPM 
leads to loss of variability in absolute magnitude; that is, the corrected field stays close to climatology. 
Thus, it may be necessary to apply some sort of inflation method to the adjusted field. The most 
common way of inflation is to multiply the adjusted values by the ratio between the standard 
deviation of the observations and that of the adjusted values. In the present study, the inflation factor 
is obtained by combining the common way of inflation and the weighting factor considered by 
Feddersen et al. (1999). The weighting factor depends on the magnitude of local variability of 
adjusted field. This approach leaves grid points of small variability, which usually have little skill, 
uninflated, while concentrating the inflation on more skillful grid points with large variability. The 
inflation factor kIF  in a grid point k is defined here as, 

)/( max,,
,

,
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obsk
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σ
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where obsk ,σ  is the standard deviation of observation, fctk ,σ  is that of the bias-corrected 

simulation anomaly, fctmax,σ is the maximum value of fctk ,σ , and )(xw  is an s-shaped weight 

function [ ]{ } 2/)5.0(9.6tanh1)( −+= xxw which is close to zero for x=0 and close to one for x=1. 
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(2) Predictability after Error Correction 

The error correction method introduced above is applied to the SNU predictions here and the 
applicability of the method to the seasonal prediction is examined based on the one model result. It is 
then applied to the other model predictions in the next section. Before making the correction, we 
examined how well the SNU model reproduces the EOF modes of precipitation variability over the 
globe. Figure 9a shows the first eigenvector of observed summer mean precipitation which explains 
24.3% of total variance, and Fig. 9c is the predicted counterpart explaining 39.0% of total variance. 
Both figures are characterized by the east-west seesaw pattern between the anomalies in the tropical 
central Pacific and Indonesian subcontinent, although the model centers are shifted to the east. Other 
noticeable differences include sign differences in the subtropical western Pacific and the Indian Ocean 
eastward from 60E. The poor performance of the model in those regions is already mentioned in the 
previous section. The time series associated with the eigenvectors, shown in Fig. 9e, vary in a similar 
way and are related to ENSO SST anomalies. The difference between the model and observed 
eigenvectors in the subtropical western Pacific and Indian Ocean is due to failure of the model to 
simulate the responses of ENSO SST anomalies.  

The second eigenvector of the observed summer-mean precipitation shown in Fig. 9b explains 
15.7% of total variance. The spatial pattern is characterized by large variations in the subtropical 
western Pacific. The model counterpart, shown in Fig. 9d, shows that the model reproduces the 
western Pacific center but with much weaker amplitude. It also produces anomalies in other regions in 
the Pacific and Indian Ocean that are somewhat different from the observations. However, the 
similarity between the time series associated with observed EOF modes and the corresponding time 
series of predicted modes provides hope of error correction for the predicted field. The error 
correction has been done by using eq. (3) and the SVD modes, which represent more clearly the 
coupled modes of observed and predicted fields than the EOF modes do. The two leading SVD 
singular vectors (not shown) are very similar to the corresponding EOF eigenvectors shown in Fig. 9. 
The similarity can be expected from Figs. 9e and 9f, where the two time series of the observed and 
predicted modes vary almost simultaneously, indicating that the two EOF modes are coupled to each 
other. The first four SVD modes are used for the correction. The fifth and higher modes consist of 
small scale patterns and explain small fraction of the variance. Sum of the four modes explains 41.2% 
of the total variance.  

Fig. 10a shows the spatial distribution of the correlation coefficient between observations and the 
corrected seasonal predictions based on the SVD method. Double cross validation procedure is 
applied to obtain the correlation skill. The correlation coefficients of corrected prediction are replaced 
by those without correction, if the former is smaller than the latter. Those locations are in the central 
tropical Pacific, where the correlation coefficient of the original prediction (Fig. 3) is already very 
large. Clearly, in most of the regions, the predictability is much enhanced by the statistical correction. 
The enhancement of predictability is particularly pronounced in the western Pacific where the 
correction skill is negative without correction (Fig. 5f) but has relatively large positive values after 
correction. The correlation skill of the corrected prediction based on CPPM is shown in Fig. 10b. In 
the tropics, both correction methods produce similar results. In the subtropics and extratropics, 
however, the CPPM has a superior ability in correcting the errors, particularly in the western Pacific.  

The prediction skill of monsoon precipitation is shown in Fig. 11 in terms of the spatial pattern 
correlation between the observed and predicted fields of each year for the monsoon domain of 10ON-
40ON and 80-160OE. In the figure, the open bar indicates the pattern correlations without correction, 
and the shaded and black bars indicate those with the corrections based on the SVD and CPPM, 
respectively. The predictability is much enhanced by the corrections for most of the years. In 
particular, for the years such as 1980, 1985, 1987-1989, and 1991, the spatial correlations with 
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negative values before correction have relatively large positive values after corrections. In the years 
1995 and 1996, on the other hand, the skill is degraded by the corrections. The 21-year averages of 
correlation values are 0.05, 0.24, and 0.32 for the predictions without correction and with the SVD 
and CPPM correction methods, respectively. Since the CPPM has a better performance than the SVD 
method, hereafter all corrections are made based on the CPPM method.  

6. Multi-model Potential Predictability 

The use of multi-model ensemble prediction for better seasonal prediction accounts for the 
following scientific reasons. Whilst the seasonal prediction is an initial-value problem and hence is 
sensitive to errors in initial conditions, a limitation on the skill of such predictions also arises from 
uncertainties in the representation of the basic equations that govern climate, particularly in the 
parameterization of unresolved processes (such as cloud formation and dissipation). To account for 
uncertainty in model formulation, ensemble members can be run with different sets of model 
formulations, each consistent with the full untruncated equations of climate. This can be achieved by 
generating the ensemble members from a set of quasi-independent state-of-the art climate models. By 
running several models each from multiple initial conditions, a multi-initial-condition and multi-
physics-model ensemble forecast can be constructed. 

There are several ways of combining the multi-model outputs. A most simple way is a composite. 
After Krishnamurti et al. (1999, 2000), scientists have tried to improve weather and climate forecasts 
using an approach called the multi-model “superensemble.” The skill of superensemble method 
depends strongly on the post-processing algorithm for the multiple regression of multi model 
solutions toward observed fields during a training period. For the post-processing, the respective 
weights for individual models are generated using a multiple regression technique. The conventional 
superensemble forecast (Krishnamurti et al., 2000) can be constructed by the following formula. 

∑
=

−+=
N
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Where, Fi is the ith model forecast, iF  is the mean of the ith forecast over the training period, 
O is the observed mean over the training period, ia  is the weighting factor of ith model, and N is the 
number of forecast models involved. The design of an optimal weighting function for a long-term 
forecast is a key for the development of multi-model superensemble system. There are four different 
methods in computing the weight factors; a conventional linear multi-regression (Krishnamurti et al. 
1999,2000), the Gauss-Jordon method, the Singular Vector Decomposition (SVD) method (Yun et al. 
2003), a neural network method. 

In the present section, the multi-model predictions are combined by the three methods: a simple 
composite (MME1), the superensemble based on SVD (MME2), and the composite of model 
predictions after each model prediction corrected by the statistical CPPM method (MME3). It is 
mentioned that the superensemble method is also applied to the predictions after error correction 
However, the superensemble in this case dose not provide a better skill compared to the composite of 
the corrected predictions. It may be because of double fitting to the observation: the first fit of the 
prediction to the observation for the correction and the second fit for the superensemble.  

The spatial pattern correlations over the monsoon region for 1979-99 are obtained by using 
MME1, MME2, and MME3, and those are plotted in Fig. 12. As shown in Fig. 6b, the composite is 
not always better than the best individual model prediction, but the average skill of the composite is 
comparable to that of best individual model. Therefore, the choice of composite prediction will be 
generally safe since we do not know the best model for the prediction. On the other hand, the 
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superensemble skill (MME2) appears to be always better than that of best individual model with a few 
exception. But, as shown in the previous section, the prediction skill of individual model after error 
correction is usually much better than that of the raw prediction. The correlation skill of MME2 
appears to be comparable to that of the best individual model after correction. The composite of 
corrected predictions (MME3) has usually a superior correlation skill than any of the corrected 
individual models. In most years, the MME3 produces best correlation skills among the multi-model 
ensemble methods. The MME3, which is the best system among the prediction systems used here, 
produces the 21 year average correlation skill of 0.54 for the monsoon summer prediction, which has 
a statistical significance. The correlation skills in other regions and other seasons should be different, 
and their usefulness should be examined separately. In conclusion, the dynamical monsoon seasonal 
prediction requires a multi-model system with sophisticated correction methods, which need further 
research efforts.  

7. Real Seasonal Predictability 

In the previous sections, the seasonal predictability was investigated by using the hindcast 
predictions with observed SST condition. However, a real operational prediction should use predicted 
SST as a boundary condition of model integration. The methods of SST prediction currently being 
used are a persistence, various kinds of ocean-atmosphere coupled model, and various statistical 
models. In the present chapter, the SST prediction was made by using a combination of the 
intermediate coupled model (Kang and Kug 2000) mainly in the tropical Pacific between 20oS and 
20oN, statistical models for extratropical oceans and Indian Ocean, and a persistence of anomalies in 
the region where the persistence gives the best skill. The prediction method of Indian Ocean SST can 
be found in Kug et al. (2004). 

By prescribing the predicted SSTs as a boundary condition, the 10 members of SNU atmospheric 
GCM integrations were performed using the 10 NCEP initial conditions of 12 hr interval for the 
period from 00Z 26 April to 12Z 30 April. Except the SST boundary condition, the prediction 
experiment is exactly same as that of the SMIP II described in Section 2. The monthly mean SSTs 
from April to August are predicted, and the daily SST data prescribed in the AGCM are obtained by 
linear interpolation of the monthly means. The present experiment is a part of Seasonal Model 
Intercomparison Project/Historical Forecast Project (SMIP/HFP) initiated by CLIVAR/WGSIP. Since 
the SMIP/HFP historical prediction data is only available for the SNU model at present, the real 
predictability is examined only for the SNU model. 

Fig. 13 shows the distribution of correlation coefficient between the observed and predicted 
monthly-mean SST anomalies for the 21 years. The correlation skill at each grid point is calculated 
based on a cross validation method. The correlation skill of May (the second month of the prediction) 
is relatively high in most of the regions, except in the Gulf Stream region. From June to August, the 
correlation skill is reduced with time, particularly over the extratropical Pacific between 20oN and 
40oN. Over the tropical region, on the other hand, the high correlation skill is almost maintained until 
August. The skill is particularly high (the values larger than 0.7) in the ENSO region and the tropical 
Indian ocean. It is interesting to note that the correlation in the tropical western Pacific has a 
minimum value in June and becomes increased in July and August.  

The correlation skill of the real seasonal-mean prediction is measured in terms of the spatial 
correlation coefficient over the globe. Fig. 14 compares the correlation skills of the SMIP (open bar), 
predictions with observed SST, and the SMIP/HFP (shaded bar), predictions with predicted SST. As 
expected, the correlation skill of SMIP/HFP at each year (the 21 year average correlation value of 
0.25) somewhat lower than that of SMIP (the average value of 0.34) with a few exceptions. After the 
statistical correction introduced in Section 5, the correlation skill of the real prediction (solid line) is 
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much improved and its averaged correlation value for 21 years becomes 0.48. Interestingly, the 
correlation skill of the corrected SMIP/HFP is similar to that of the corrected SMIP (shaded line, the 
21 year averaged value of 0.43) for most of the years. At present, the reason is not clear but may be 
due to the fact that the level of uncertainty in fitting to the observation (correction) can be comparable 
to the loss of correlation skill by predicting SST. The results should be further examined with many 
other prediction models. 

As mentioned in Introduction, most operational centers use the Tier-two system, but the European 
groups have constructed a Tier-one multi-model seasonal prediction system, DEMETER, utilizing 
seven ocean-atmosphere coupled models in the European countries, listed in Table 2. Here, we 
examine the prediction skill of the DEMETER system. Fig. 15 shows the correlation skills of 
summer-mean SST for the individual models and the multi-model ensemble over the globe. All 
models have relatively high correlation skill over the tropical Pacific and relatively low in the 
extratropical oceans. The correlation skill of the multi-model composite, shown in Fig. 15a, is higher 
than those of individual models in most of regions and particularly high (over 0.8) in the tropical 
Pacific. Those individual correlation skills shown in Fig. 15 can be compared to that of the SST 
prediction of the SNU Tier-two system shown in Fig. 15i. The SST prediction skill of the Tier-two 
system is comparable to or a bit higher than those of the DEMETER coupled models in most of the 
regions.  

The prediction skills of precipitation of the coupled models, shown in Fig. 16, are relatively high 
in the tropical Pacific but poor in other regions. The skill of the multi-model composite (Fig. 16a) is 
similar to that of the best model. Comparison of individual Tier-one systems to the SNU Tier-two HFP 
system (Fig. 16i) indicates that the Tier-one system appears to be better than the Tier-two system, 
even though both the Tier-one and Tier-two SST predictions are comparable to each other. However, 
this comparison can not be generalized at present because only one Tier-two system is compared to 
many Tier-one systems. The better prediction of precipitation of the coupled model is distinctive in 
the western Pacific, where the Tier-two system produces negative correlation skills, indicating that the 
seasonal-mean atmospheric state does not passively respond to the SST but is determined by ocean-
atmosphere interaction processes in the western Pacific.  

The year-to-year variations of spatial pattern correlation for the 60oS-60oN domain between the 
predicted and observed precipitation are shown in Fig. 17. Shaded and dark circles indicate the 
correlation values of raw and corrected predictions, respectively. The average values of the seven 
models at each year are connected by the shaded line (raw prediction) and the dark line (corrected 
prediction). These averaged values can be compared to the corresponding values of the SNU Tier-2 
HFP prediction. For the raw prediction case, the average performance of the Tier-one systems (the 20 
year average value of 0.33) is better than that of the Tier-two system shown by the shaded bar in Fig. 
14 (the 21 year average of 0.25). On the other hand, the average performance of corrected Tier-one 
systems (20 year average value of dark line, 0.46) is similar to that of the corrected Tier-two system, 
shown in Fig. 14. These results indicate that the two systems with a same correction may produce 
similar results. However, further researches are needed with same numbers of Tier-one and Tier-two 
systems to make more conclusive statements. 

The MME3 multi-model ensemble method (composite of the corrected predictions), previously 
shown as the best among several multi-model ensemble methods treated in this Chapter, is now 
applied to the DEMETER predictions. The solid line in Fig. 18 shows year-to-year variations of the 
spatial pattern correlation between the observed and the MME3 precipitations for the region between 
60oS and 60oN. The 20 year averaged value of the correlation values of the DEMETER MME3 is 
0.58, which is somewhat lower than the value (0.62) of the multi-model composite of five corrected 
Tier-two predictions with observed (not predicted) SST condition (SMIP II), shown in Section 6. But 
those two correlation values are within a same significance level. Although the multi-model Tier-2 
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system with predicted SST can not be compared to the multi-model Tier-1 system at present, it may be 
assumed that the two systems may produce a similar prediction skill. This assumption is based on the 
results of Fig. 14 that the Tier-2 systems (with observed and predicted SST) with a same correction 
produce a similar prediction skill. However, this statement again deserves a further research. Fig. 18 
also shows the correction skill of DEMETER MME3 for the Monsoon region (shaded dashed line). 
The 20 year averaged of the correlation values is 0.56. Interestingly is that the interannual variation of 
the Monsoon prediction skill is similar to that of global prediction skill. It is due to the facts that the 
global and monsoon prediction skills largely depend on the tropical Pacific SST related to ENSO. 

8. Summary and Concluding Remarks 

The present chapter showed present status of state-of-the-art dynamical seasonal prediction 
systems and demonstrated possible improvement of the predictions based on statistical correction and 
combination of several independent predictions. In particular, seasonal predictability of summer-mean 
precipitation over the Asian Monsoon-Western Pacific region is assessed by using 21 year hindcast 
predictions of five models for 1979-1999. The five models consist of the operation seasonal prediction 
models of Japan Meteorological Agency (JMA), Korea Meteorological Administration (KMA), 
National Aeronautical Space Agency (NASA), National Centers for Environment Prediction (NCEP), 
and Seoul National University (SNU). The historical prediction data were produced as part of 
CLIVAR/Seasonal Prediction Model Intercomparison Project II (SMIP II). In this experiment, the 
SST boundary conditions during the prediction are prescribed with observed SSTs, and thus the 
potential predictability has been assessed. The potential predictabilities of individual models and a 
multi-model ensemble system are shown by various methods including the signal to noise ratio based 
on the analysis of variance and the anomaly correlations. In addition to the potential predictability, the 
real predictability of seasonal mean precipitation of the Tier-two and Tier-one systems, have been 
assessed, respectively, based on the SMIP/HFP experiment, where the SSTs for the prediction period 
are predicted, and based on the coupled model predictions from the DEMETER project. 

The signal to noise ratio of seasonal mean precipitation over the monsoon region is lower than 
those of other tropical regions. In addition to large noise, all Tier-two models produce large systematic 
errors in the Asian Monsoon region, particularly in the western Pacific. As a result, all models produce 
very poor correlation skill over the Monsoon region. The model composite prediction does not help to 
improve the correlation skill. For the subtropical western Pacific and the Atlantic Ocean, all models 
and the composite show the correlation skills with relatively large negative values. The negative skill 
in the western Pacific is due to model bias, where the external response has a large systematic error. 
Recently, Wang et al. (2004) suggested that the poor simulations of precipitation over the western 
Pacific is due to the two-tier prediction system, where the atmosphere is forced by the prescribed SST, 
but in nature the ocean-atmosphere coupled processes are active and atmospheric feedback to the 
ocean, which is missing in the two-tier approach, is important in the western Pacific. 

To correct the model bias, statistical methods based on singular value decomposition (SVD) and a 
coupled patter project method (CPPM) were developed and applied to individual model predictions. It 
is shown that the statistical correction is effective in enhancing the predictability, particularly for the 
Asian Monsoon–Pacific region, where the large model bias is included in the leading eigenmodes of 
forced signal (Kang et al. 2004). The enhancement of predictability is particularly pronounced in the 
western Pacific where the correction skill is negative without correction but has relatively large 
positive values after correction. It is shown that the point-wise correction using the CPPM is generally 
better than the correction with leading SVD modes. Seasonal predictability of multi-model ensemble 
prediction is also assessed by using several multi-model methods including simple composite, various 
super-ensemble techniques and a composite of corrected individual predictions. It is shown that a 
reasonably good dynamical seasonal prediction can be achieved when the multi-model predications 
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are combined based on the composite of the individual predictions after applying the statistical 
correction. 

The multi-model seasonal prediction based on coupled models is also examined by using the 
hindcast prediction data of DEMETER, which is an international European project where nine 
European coupled models have participated (Palmer et al. 2004). It has been anticipated that the Tier-
one system often produces large systematic errors, particularly in the extratropical region, compared 
to those of the Tier-two system with the prescribed SST anomalies obtained from the same Tier-one 
system. However, this study shows that the Tier-one system can better predict the summer-mean 
precipitation particularly over the Monsoon-western Pacific region, where the ocean-atmosphere 
feedback is active. Although the DEMETER Tier-one systems generally produce better prediction 
skills over the globe compared to a Tier-two system with predicted SST, the two systems produce a 
similar prediction skill after statistical correction. The spatial correlation skill of the DEMETER 
MME3 for summer-mean precipitation, the best among the multi-model ensemble systems treated in 
the Chapter, is 0.58 over the globe and 0.56 over the monsoon region. These values may represent the 
summer-mean precipitation prediction skills that we can achieve with dynamical prediction models at 
present.  
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Table 1. Description of the five models used in the present study. 

Institute Resolution Physical parameterizations 

Convection: Prognostic Arakawa-Schubert scheme  

PBL: Mellor-Yamada level-2 closure scheme  JMA T63L40 

Land sfc.: Simple Biosphere Model (Sellers et al. 1986) 

Convection: Kuo scheme (1974)  

PBL: Meller and Yamada (1982) level 2 closure scheme KMA T106L21 

Land sfc.: Simple Biosphere Model (Sellers et al. 1986) 

Convection: Relaxed Arakawa-Schubert scheme (Moorthi and 
Suarez, 1992) 

PBL: Louis et al (1982) NASA 2ox2.5oL34 

Land sfc.: Mosaic LSM (Koster and Suarez, 1992) 

Convection: Relaxed Arakawa-Schubert scheme (Moorthi and 
Suarez, 1992) 

PBL: Non-local diffusion scheme (Hong and Pan, 1996) NCEP T62L28 

Land sfc.: OSU two-layer model (Pan and Mahrt, 1987) 

Convection: Relaxed Arakawa-Schubert scheme (Moorthi and 
Suarez, 1992) 

PBL: Non-local diffusion (Holtslag and Boville, 1993) SNU T63L21 

Land sfc.: NCAR LSM (Bonan, 1995) 
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Table 2. Simple description of the 7 ocean-atmosphere coupled models used in a tier-one multi-model seasonal 
prediction system of DEMETER. 

Institute AGCM Resolusion OGCM Resolution 

CERFACS ARPEGE T63 
31 Levels OPA 8.2 2.0x2.0 

31 Levels 

ECMWF IFS T95 
40 Levels HOPE-E 1.4x0.3-1.4 

29 Levels 

INGV ECHAM-4 T42 
19 Levels OPA 8.1 2.0x0.5-1.5 

31 Levels 

LODYC IFS T95 
40 Levels OPA 8.2 2.0x2.0 

31 Levels 

Meteo- France ARPEGE T63 
31 Levels OPA 8.0 182GPx152GP 

31 Levels 

Met Office HadAM3 2.5x3.75 
19 Levels 

GloSea OGCM 
based on 
HadCM3 

1.25x0.3-125 
40 Levels 

MPI ECHAM-5 T42 
19 Levels MPI-OM1 2.5x0.5-2.5 

23 Levels 
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Fig. 1. Climatological summer mean precipitation. (a) Observation, (b)-(f), JMA, KMA, NASA, NCEP, and 
SNU models. Contour interval is 2, 4, 6, 8, 10, 15, 20, 25, and 30 mm/day and light and dark shadings indicate 
the rainfall rate more than 4 and 8 mm/day, respectively.  

(a) CMAP 

(c) KMA 

(e) NCEP 

(b) JMA 

(d) NASA 

(f) SNU 
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Fig. 2. Variances of summer mean precipitation anomalies for the 21years of 1979-1999. (a) CMAP observation 
precipitation, (b) JMA, (c) KMA, (d) NASA, (e) NCEP, and (f) SNU prediction models. Variance of each model 
is computed using all ensemble members of 21 year predictions. Contour interval is 1, 3, 6, 12, 24, and 48 
mm2/day2 and light and dark shadings indicate the variance more than 3 and 12 mm2/day2, respectively. 

(a) CMAP 

(c) KMA 

(e) NCEP 

(b) JMA 

(d) NASA 

(f) SNU 
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Fig. 3. (a)-(e) External variance of precipitation based on the ensemble average of each year. (f)-(j) Internal 
variance based on the deviation of individual members from the ensemble average. Contour interval is 1, 3, 6, 
12, 24 and 36 mm2/day2 and shading indicates the variance more than 6 mm2/day2. (k)-(o) Signal to noise ratio 
defined by ratio of the forced variance to the free variance. Contour levels are 1, 2, 4, 8, and 16 and the dashed 
line indicates 0.5. Shading indicates the signal to noise ratio bigger than 1. Each model is marked at the upper-
left corner of each panel. 
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Fig. 4. (a)-(e) Variance of the systematic error, the difference between the ensemble average of prediction and 
the corresponding observation. Contour interval is 1, 3, 6, 12, 24, and 36 mm2/day2 and shading indicates the 
variance more than 6 mm2/day2. (f)-(j) Ratio between the variances of ensemble mean and systematic error. 
Contour levels are 1, 2, 4, and 8 and the dashed line indicates 0.5. Shadings indicates the ratio bigger than 1. 
Each model is marked at the upper-left corner of each panel. 

(a) JMA 

(b) KMA 

(c) NASA 

(d) NASA 

(e) SNU 

(f) JMA 

(g) KMA 

(h) NASA 

(i) NASA 

(j) SNU 
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Fig. 5. Distribution of correlation coefficient between the observed and simulated ensemble-mean 

precipitation at each grid point. Each model case is marked at the upper-left corner of each panel, and 
the five model composite case is shown in (a). Contour interval is 0.2 and light and dark shadings 
denote the correlation coefficient significant at 95%(0.433) and 99%(0.549) confidence level, 
respectively. Zero line is not drawn.  

(a) CMAP 

(c) KMA 

(e) NCEP 

(b) JMA 

(d) NASA 

(f) SNU 
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Fig. 6. Spatial pattern correlation coefficients between the observed and predicted ensemble-mean precipitations 
(a) over the globe (0-360OE and 60OS-60ON) and (b) over the Monsoon region (40-160OE and 20OS-30ON). 
Correlation values of each model and model composite are shown by various marks denoted in the figure.  

(a) Global Region 

(b) Monsoon Region 
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Fig. 7. (a) Composite SST anomalies for the years of good Monsoon prediction, 1991, 97, and 98. (b) Those for 
the years of poor Monsoon prediction, 1980, 82, 96. Selected cases exceed the one standard deviation of 
correlation coefficients. Shading denote the anomalies that are significant at the 99% level of each grid point 
(Student t-test). 

(a) Good Composite

(b) Poor Composite
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Fig. 8. Perfect model correlations of various models. (a) global spatial pattern correlation (0-360OE and 60OS-
60ON), and (b) the pattern correlation for the Monsoon region (40-160OE and 20OS-30ON).  

(a) Global Region 

(b) Monsoon Region 
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Fig. 9. EOF modes of the observed and simulated ensemble-mean precipitation. (a) and (b) are the observed first 
and second eigenvectors, (c) and (d) the simulated counter parts. (e) and (f) are the time series associated with 
the eigenvectors. Solid and dashed lines indicate the observed and simulated time series, respectively. 

(a) 1st mode of obs. (24.3%)                     (b) 2nd mode of obs. (15.7%)

(c) 1st mode of model (39.0%)                  (d) 2nd mode of model (13.2%)

(e) 1st mode                                               (f) 2nd mode
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Fig. 10. As in Fig. 5 except the predicted precipitation of SNU SMIP after correction of systematic error using 
both (a) SVD and (b) CPPM. 

(a) Correlation coefficients after SVD correction 

(b) Correlation coefficients after CPPM correction
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Fig. 11. Pattern correlation coefficients between the observed and predicted precipitations of SNU SMIP before 
(open bar) and after the bias correction by SVD (gray shaded bar) and CPPM (black shaded bar) over the Asian 
monsoon and western Pacific region (80-160OE, 10-40ON). 
 
 
 
 
 

 
Fig. 12. Time series of spatial pattern correlations over the monsoon region (40 OE -160OE and 20OS-30ON) 
between the observed and the predicted precipitations MME1 (dotted line), MME2 (dashed line), and MME3 
(solid black line). MME1, MME2, and MME3 are the multi-model predictions based on a simple composite, 
SVD based superensemble, and the composite of correction predictions by CPPM, respectively. 

MME2 (0.40)  MME3 (0.54) MME1 (0.30)

 Asian Monsoon and western Pacific region 

Before correction (0.05) SVD correction (0.24) CPPM correction (0.32) 
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Fig. 13. Distribution of correlation coefficient between the observed and predicted summer-mean SST at each 
grid point for 21 years. The prediction data is from the SMIP/HFP of the SNU model.  
 
 
 

 
Fig. 14. Global Pattern correlation coefficient between the observed and predicted ensemble-mean 
precipitations. For the comparison, the correlation values for the SMIP and SMIP/HFP of the SNU model are 
shown by filled and open bars, respectively. The correlation values of the SMIP(gray) and SMIP/HFP(black) 
after statistical correction are shown by solid lines, respectively.  

(a) May (2-month lead) (b) June (3-month lead)

(c) July (4-month lead) (d) August (5-month lead) 

SNU/SMIP (0.34) 

SNU/HFP (0.25) 

CPPM  SNU/SMIP (0.43) 

CPPM  SNU/HFP (0.48) 
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Fig. 15. Correlation coefficient of summer-mean SST for the multi-model ensemble (a) and the individual 
models (b-h) in a Tier-one system of DEMETER over the globe during 1980-1999. (i) is SST prediction skill of 
the SNU Tier-two system.  

(a) MME 

(d) INGV 

(b) CERFACS (c) ECMWF 

(e) LODYC (f) Meteo France 

(g) Max Planck Inst. (h) UK Met Office (i) SNU 
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Fig. 16. Correlation coefficient of summer-mean precipitation for the multi-model ensemble (a) and the 
individual models (b-h) in a Tier-one system, DEMETER over the globe. (i) is the SNU Tier-two system.  

(a) MME 

(d) INGV 

(b) CERFACS (c) ECMWF 

(e) LODYC (f) Meteo France 

(g) Max Planck Inst. (h) UK Met Office (i) SNU 
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Fig. 17. The interannual variation of the averaged value of pattern correlation of the individual models before 
(gray) and after the bias correction (black) in a Tier-one system over the globe. The 20-year averaged 
correlation values are also written in caption as number. 
 
 
 

 
 
Fig. 18. Spatial pattern correlation between the predicted and observed precipitation over the global and 
monsoon region during 1980-1999. The correlation values of the composite after statistical correction of 
individual model in a Tier-one system (MME3) over the global and monsoon regions are written in caption. 
  

Before correction (0.33) CPPM correction (0.46) 

Monsoon region (0.56) Global region (0.58) 


